Discussion on "Techniques for Massive-Data Machine Learning in Astronomy" by A. Gray

نویسنده

  • Nicholas M. Ball
چکیده

Thus, an approach which provides these tools in a way that scales to these datasets is not just desirable, it is vital. The expertise required spans not just astronomy, but also computer science, statistics, and informatics. As a computer scientist and expert in machine learning, Alex’s contribution of expertise and a large number of fast algorithms designed to scale to large datasets, is extremely welcome. We focus in this discussion on the questions raised by the practical application of these algorithms to real astronomical datasets. That is, what is needed to maximally leverage their potential to improve the science return? This is not a trivial task. While computing and statistical expertise are required, so is astronomical expertise. Precedent has shown that, to-date, the collaborations most productive in producing astronomical science results (e.g, the Sloan Digital Sky Survey), have either involved astronomers expert in computer science and/or statistics, or astronomers involved in close, long-term collaborations with experts in those fields. This does not mean that the astronomers are giving the most important input, but simply that their input is crucial in guiding the effort in the most fruitful directions, and coping with the issues raised by real data. Thus, the tools must be

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Machine Learning Method for Intrusion Detection

Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...

متن کامل

Machine learning algorithms in air quality modeling

Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...

متن کامل

Modeling of Chloride Ion Separation by Nanofiltration Using Machine Learning Techniques

In this work, several machine learning techniques are presented for nanofiltration modeling. According to the results, specific errors are defined. The rejection due to Nanofiltration increases with pressure but decreases with increasing the concentration of chloride ion. Methods of machine learning represent the rejection of nanofiltration as a function of concentration, pH, pressure and also ...

متن کامل

Bridging the semantic gap for software effort estimation by hierarchical feature selection techniques

Software project management is one of the significant activates in the software development process. Software Development Effort Estimation (SDEE) is a challenging task in the software project management. SDEE is an old activity in computer industry from 1940s and has been reviewed several times. A SDEE model is appropriate if it provides the accuracy and confidence simultaneously before softwa...

متن کامل

Fault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods

Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1110.5688  شماره 

صفحات  -

تاریخ انتشار 2011